Data Science and Professional Training in Library Science: A Textual Analysis and Curriculum Review in Ibero-America
HTML (Español (España))
PDF (Español (España))

Keywords

Bibliometrics
Textual Analysis
Library Science Education
Data Science

How to Cite

Estrada Cuzcano, A., & Alhuay-Quispe, J. (2025). Data Science and Professional Training in Library Science: A Textual Analysis and Curriculum Review in Ibero-America. Investigación Bibliotecológica. Archivonomía, bibliotecología información, 39(102), 203–220. https://doi.org/10.22201/iibi.24488321xe.2025.102.58943
Métricas de PLUMX

Abstract

Current digital environments and the increasing information explosion have transformed the work of professionals, leading to the need for significant changes in higher education to develop competencies in the era of big data. The literature reveals how the traditional activities of library science professionals have evolved to face new challenges and emerging techniques and trends such as data science. This article presents a theoretical and methodological approach to the impending ontological impact on the discipline and its implications during the educational preparation in the field. The objective is to know the inclusion of data science courses in library science programs based on a review of undergraduate curricula from Ibero-American countries. Also, to identify research trends on big data management and related librarian profiles, as examined in scientific publications retrieved from the Web of Science database between 2015-2022, focusing on terms such as “data science,” “big data,” “data scientist,” “databrarian,” “databrarianship,” and “data librarian” within the fields of library and information science, followed by a content analysis using co-occurrence techniques and principal component analysis.

https://doi.org/10.22201/iibi.24488321xe.2025.102.58943
HTML (Español (España))
PDF (Español (España))

References

Alhuay-Quispe, Joel, Alonso Estrada-Cuzcano y Lourdes Bautista-Ynofuente. 2022. “Análisis y visualización de datos en estudios bibliométricos”. JLIS.it 13 (2): 58-73. https://doi.org/10.36253/jlis.it-461

Andrikopoulou, Angeliki, Jennifer Rowley y Geoff Walton. 2021. “Research Data Management (RDM) and the Evolving Identity of Academic Libraries and Librarians: A Literature Review”. New Review of Academic Librarianship 28 (4): 349-65. https://doi.org/10.1080/13614533.2021.1964549

Aria, Massimo, y Corrado Cuccurullo. 2017. “Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis”. Journal of Informetrics 11 (4): 959-75. https://doi.org/10.1016/j.joi.2017.08.007

Blondel, Vincent, Jean-Loup Guillaume, Renaud Lambiotte y Etienne Lefebvre. 2008. “Fast Unfolding of Communities in Large Networks”. Journal of Statistical Mechanics: Theory and Experiment 2008 (10), p10008. https://doi.org/10.1088/1742-5468/2008/10/P10008

Breiman, Leo. 2001. “Statistical Modeling: The Two Cultures (With Comments and a Rejoinder by the Author)”. Statistical Science 16 (3): 199-231. https://doi.org/10.1214/ss/1009213726

Chambers, John. 1993. “Greater or Lesser Statistics: A Choice for Future Research”. Statistics and Computing 3 (4): 182-84. https://doi.org/10.1007/BF00141776

Chohdary MPhil, Nazia Ismail, Mahe Bushra Asghar y Muhammad Ahmad Al Shaheer. 2021. “Predicting LIS Scholarly Research Directions in the Era of Data Science”. Library Philosophy and Practice, e6328. https://digitalcommons.unl.edu/libphilprac/6328/

Cleveland, William. 2001. “Data Science: An Action Plan for Expanding the Technical Areas of the Field of Statistics”. International Statistical Review 69 (1): 21-26. https://doi.org/10.1111/j.1751-5823.2001.tb00477.x

Cox, Andrew, y Suvodeep Mazumdar. 2024. “Defining Artificial Intelligence for Librarians”. Journal of Librarianship and Information Science 56 (2): 330-40. https://doi.org/10.1177/09610006221142029

Desai, Jules, David Watson, Vincent Wang, Mariarosaria Taddeo y Luciano Floridi. 2022. “The Epistemological Foundations of Data Science: A Critical Analysis”. SSRN, e4008316. https://doi.org/10.2139/ssrn.4008316

Donoho, David. 2017. “50 Years of Data Science”. Journal of Computational and Graphical Statistics 26 (4): 745-66. https://doi.org/10.1080/10618600.2017.1384734

Estrada-Cuzcano, Alonso, y Karen Lizeth Alfaro-Mendives. 2021. “Analysis of Professional Secrecy in Ibero-America: Ethical and Legal Perspectives”. IFLA Journal 48 (3): 432-38. https://doi.org/10.1177/03400352211057149

Floridi, Luciano, y Mariarosaria Taddeo. 2016. “What is Data Ethics?”. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374 (2083), e20160360. https://doi.org/10.1098/rsta.2016.0360

Francis, Mary. 2021. “The Treatment of Privacy in Professional Codes of Ethics: An International Survey”. The Library Quarterly 91 (3): 304-21. https://doi.org/10.1086/714320

Girvan, Michelle, y Mark Newman. 2002. “Community Structure in Social and Biological Networks”. Proceedings of the National Academy of Sciences 99 (12): 7821-26. https://doi.org/10.1073/pnas.122653799

Harzing, Anne-Wil. 2007. Publish or Perish. V8. Windows. https://harzing.com/resources/publish-or-perish

Hendrix, Dean. 2010. “Relationships Between Association of Research Libraries (ARL) Statistics and Bibliometric Indicators: A Principal Components Analysis”. College and Research Libraries 71 (1): 32-41. https://doi.org/10.5860/0710032

Hernández-Pérez, Tony, y María-Antonia García-Moreno. 2013. “Datos abiertos y repositorios de datos: nuevo reto para los bibliotecarios”. El Profesional de la Información 22(3): 259-63. https://doi.org/10.3145/epi.2013.may.10

Khan, Hammad. 2020. “Exploring Data Science Learning Objectives in LIS Education”. Proceedings for the Association for Library and Information Science Education Annual Conference: ALISE 2020, 317-25. https://hdl.handle.net/2142/108828

Koltay, Tibor. 2015. “Data Literacy for Researchers and Data Librarians”. Journal of Librarianship and Information Science 49 (1): 3-14. https://doi.org/10.1177/0961000615616450

Martínez Musiño, Celso. 2021a. “Ciencia de datos versus ciencia de la información: informetría y análisis textual”. Scire: Representación y Organización del Conocimiento 27 (2): 31-42. https://doi.org/10.54886/scire.v27i2.4731

Martínez Musiño, Celso. 2021b. “La informetría y el análisis del discurso aplicados a la producción científica en la ciencia de datos y ciencia de la información”. E-Ciencias de la Información 11 (2), e45234. https://doi.org/10.15517/eci.v11i2.45234

Ndukwe, Ifeanyi Glory, y Ben Kei Daniel. 2020. “Teaching Analytics, Value and Tools for Teacher Data Literacy: A Systematic and Tripartite Approach”. International Journal of Educational Technolog y in Higher Education 17 (1), 22. https://doi.org/10.1186/s41239-020-00201-6

Porter, Tanya Thames. 2015. “Identifying the Data Scientist Amongst STEM Educators: An Introspective Survey of Work Skills”. Tesis de doctorado, Universidad de Capella. https://doi.org/10.13140/RG.2.1.3531.0168

Semeler, Alexandre Ribas, Adilson Luiz Pinto y Helen Beatriz Frota Rozados. 2019. “Data Science in Data Librarianship: Core Competencies of a Data Librarian”. Journal of Librarianship and Information Science 51 (3): 771-80. https://doi.org/10.1177/0961000617742465

UdeA (Universidad de Antioquia). 2018. Plan de Acción Escuela Interamericana de Bibliotecología 2018-2021. Escuela Interamericana de Bibliotecología, Universidad de Antioquia. https://bit.ly/2VYGE1d

Urs, Shalini, y Mohamed Minhaj. 2023. “Evolution of Data Science and Its Education in iSchools: An Impressionistic Study Using Curriculum Analysis”. Journal of the Association for Information Science and Technolog y 74 (6): 606-22. https://doi.org/10.1002/asi.24649

Van Eck, Nees Jan, y Ludo Waltman. 2010. “Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping”. Scientometrics 84 (2): 523-38. https://doi.org/10.1007/s11192-009-0146-3

Virkus, Sirje, y Emmanouel Garoufallou. 2020. “Data Science and Its Relationship to Library and Information Science: A Content Analysis”. Data Technologies and Applications 54 (5): 643-63. https://doi.org/10.1108/DTA-07-2020-0167

Wang, Lin. 2018. “Twinning Data Science With Information Science in Schools of Library and Information Science”. Journal of Documentation 74 (6): 1243-57. https://doi.org/10.1108/JD-02-2018-0036

Wang, Yi-Yu, y Chi-Shiou Lin. 2019. “A Survey of Data Science Programs and Courses in the iSchools”. Proceedings of the Association for Information Science and Technolog y 56 (1): 801-02. https://doi.org/10.1002/pra2.184

Zhang, Yin, Dan Wu, Loni Hagen, Il-Yeol Song, Javed Mostafa, Sam Oh, Theresa Anderson, et al. 2023. “Data Science Curriculum in the iField”. Journal of the Association for Information Science and Technolog y 74 (6): 641-62. https://doi.org/10.1002/asi.24701

Authors:

  • They must sent the publication authorization letter to Investigación Bibliotecológica: archivonomía, bibliotecología e información.
  • They can share the submission with the scientific community in the following ways:
    • As teaching support material
    • As the basis for lectures in academic conferences
    • Self-archiving in academic repositories.
    • Dissemination in academic networks.
    • Posting to author’s blogs and personal websites

These allowances shall remain in effect as long as the conditions of use of the contents of the journal are duly observed pursuant to the Creative Commons:Attribution-NonCommercial-NoDerivatives 4.0 license that it holds. DOI links for download the full text of published papers are provided for the last three uses.

Self-archiving policy

For self-archiving, authors must comply with the following

a) Acknowledge the copyright held by the journal Investigación Bibliotecológica: archivonomía, bibliotecología e información.

b) Establish a link to the original version of the paper on the journal page, using, for example, the DOI.

c) Disseminate the final version published in the journal.

Licensing of contents

The journal Investigación Bibliotecológica: archivonomía, bibliotecología e información allows access and use of its contents pursuant to the Creative Commons license: Attribution- Non-commercial-NoDerivatives 4.0.

Licencia de Creative Commons


Investigación Bibliotecológica: archivonomía, bibliotecología e información by Universidad Nacional Autónoma de México is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional License.
Creado a partir de la obra en http://rev-ib.unam.mx/ib.

 

This means that contents can only be read and shared as long as the authorship of the work is acknowledged and cited. The work shall not be exploited for commercial ends nor shall it been modified.

Limitation of liability

The journal is not liable for academic fraud or plagiarism committed by authors, nor for the intellectual criteria they employ. Similarly, the journal shall not be liable for the services offered through third party hyperlinks contained in papers submitted by authors.

In support of this position, the journal provides the Author’s Duties notice at the following link: Responsibilities of authors.

The director or editor of the journal shall notify authors in the event it migrates the contents of the journal’s official website to a distinct IP or domain.

 

Downloads

Download data is not yet available.