Abstract
This paper analyzes how artificial intelligence can assist in selecting audiovisual documents in television networks to streamline the documentation process. The objective is to demonstrate how, where, and with which applications artificial intelligence can intervene to optimize the audiovisual selection process, particularly in news programs. To achieve this, we conducted a literature review and a state-of-the-art analysis of Spanish audiovisual companies, inferring how artificial intelligence could aid in automating the selection process and identifying current tools that could enhance this process. The results show that although better algorithms still need to be developed, there are potentialities within artificial intelligence technology to automate the process.
References
Atrey, Pradeep, Anwar Hossain, Abdulmotaleb El Saddik y Mohan Kankanhalli. 2010. “Multimodal Fusion for Multimedia Analysis: A Survey”. Multimedia Systems 16 (6): 345-79. https://doi.org/10.1007/s00530-010-0182-0
Bazán-Gil, Virginia. 2023. “Artificial Intelligence Applications in Media Archives”. Profesional de la Información 31 (5), e320517 https://doi.org/10.3145/epi.2023.sep.17
Caldera-Serrano, Jorge, y Pilar Arranz Escacha. 2012. Documentación audiovisual en televisión. Barcelona: Editorial Universidad Oberta de Cataluña.
Caldera-Serrano, Jorge, y Pilar Arranz Escacha. 2013. “Cambios en los métodos de selección documental en los sistemas de información digital en las televisiones”. Investigación Bibliotecológica: archivonomía, bibliotecología e información 27 (60): 15-26. https://doi.org/10.1016/S0187-358X(13)72541-3
Cambria, Erik, Yang Li, Frank Xing, Soujanya Poria y Kenneth Kwok. 2020. “SenticNet 6: Ensemble Application of Symbolic and Subsymbolic AI for Sentiment Analysis”. CIKM ’20: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, 105-14. Nueva York: Association for Computing Machinery. https://doi.org/10.1145/3340531.3412003
Giménez Rayo, Mabel. 2007. Documentación audiovisual de televisión / La selección del material. Gijón: Ediciones Trea.
Giménez Rayo, Mabel. 2018. “La selección del material audiovisual de televisión en el entorno digital: perspectivas y realidad”. Documentación de las Ciencias de la Información 41: 47-59. https://doi.org/10.5209/DCIN.61456
Goodfellow, Ian, Yoshua Bengio y Aaron Courville. 2016. Deep Learning. Massachusetts: Massachusetts Institute of Technology Press.
Graves, Alex, Abdel-rahman Mohamed y Geoffrey Hinton. 2013. “Speech Recognition with Deep Recurrent Neural Networks”. Prepublicación Arxiv. https://doi.org/10.48550/arXiv.1303.5778
Hanford, Anne. 1986. “Normas recomendadas y procedimientos para seleccionar material de televisión”. En Panorama de los archivos audiovisuales / Contribución a la puesta al día de las técnicas de archivo internacionales, 125-30. Madrid: Servicio de Publicaciones de RTVE.
He, Yibo, Kah Phooi Seng y Li Minn Ang. 2023. “Generative Adversarial Networks (GANs) for Audio-Visual Speech Recognition in Artificial Intelligence IoT”. Information 14 (10), 575. https://doi.org/10.3390/info14100575
Hidalgo Goyanes, Paloma. 2013. “Patrimonio audiovisual en televisión”. En Gestión del patrimonio audiovisual en medios de comunicación, coordinado por Juan Carlos Marcos Recio, 53-82. Madrid: Editorial Síntesis.
Iman, Mohammadreza, Hamid Reza Arabnia y Khaled Rasheed. 2023. “A Review of Deep Transfer Learning and Recent Advancements”. Technologies 11 (2), 40. https://doi.org/10.3390/technologies11020040
Incio Flores, Fernando Alain, Dulce Lucero Capuñay Sánchez, Ronald Omar Estela Urbina, Miguel Ángel Valles Coral, Segundo Edilberto Vergara Medrano y Duberli Geomar Elera Gonzáles. 2022. “Inteligencia artificial en educación: una revisión de la literatura en revistas científicas internacionales”. Apuntes Universitarios 12 (1): 353-72. https://doi.org/10.17162/au.v12i1.974
Jurafsky, Dan, y James Martin. 2022. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition with Language Models (manuscrito en línea), 3.ª ed. https://web.stanford.edu/~jurafsky/slp3/
Khoei, Tala Talaei, Hadjar Ould Slimane y Naima Kaabouch. 2023. “Deep Learning: Systematic Review, Models, Challenges, and Research Directions”. Neural Computing and Applications 35: 23103-124 https://doi.org/10.1007/s00521-023-08957-4
Larsson, Stefan. 2020. “On the Governance of Artificial Intelligence Through Ethics Guidelines”. Asian Journal of Law and Society 7 (3): 437-51. https://doi.org/10.1017/als.2020.19
LeCun, Yann, Yoshua Bengio y Geoffrey Hinton. 2015. “Deep Learning”. Nature 521: 436-44. https://doi.org/10.1038/nature14539
León-Moreno, José Antonio, y Jorge Caldera-Serrano. 2010. “Análisis de la comercialización de los archivos audiovisuales televisivos por la red: posibilidades e implicaciones”. Investigación Bibliotecológica: archivonomía, bibliotecología e información 24 (52): 217-35. https://doi.org/10.22201/iibi.0187358xp.2010.52.27461
Ordóñez Palma, María José, y Jimmy Leonardo Gutiérrez García. 2023. “Prototipos de procesamiento de lenguaje natural bajo el modelo de técnicas de aprendizaje automático”. Journal TechInnovation 2 (2): 34-43. https://doi.org/10.47230/Journal.TechInnovation.v2.n2.2023.34-43
Ponce Gallegos, Julio César, Aurora Torres Soto, Fátima Sayuri Quezada Aguilera, Antonio Silva Sprock, Ember Ubeimar Martínez Flor, Ana Casali, Eliana Scheihing, et al. 2014. Inteligencia artificial. Iniciativa Latinoamericana de Libros de Texto Abiertos. http://hdl.handle.net/2133/17686
Póveda-López, Inés del Carmen, Jorge Caldera-Serrano y José-Antonio Polo-Carrión. 2010. “Definición del objeto de trabajo y conceptualización de los sistemas de información audiovisual en televisión”. Investigación Bibliotecológica: archivonomía, bibliotecología e información 24 (50): 15-34. https://doi.org/10.22201/iibi.0187358xp.2010.50.21409
Purwins, Hendrik, Bo Li, Tuomas Virtanen, Jan Schlüter, Shou-Yiin Chang y Tara Sainath. 2019. “Deep Learning for Audio Signal Processing”. IEEE Journal of Selected Topics in Signal Processing 13 (2): 206-19. https://ieeexplore.ieee.org/document/8678825
Rouhiainen, Lasse. 2018. Inteligencia artificial / 101 cosas que debes saber hoy sobre nuestro futuro. Barcelona: Alienta Editorial.
Sánchez Rosado, Juan Carlos, y Mikel Díez Parra. 2022. “Impacto de la inteligencia artificial en la transformación de la sanidad: beneficios y retos”. Economía Industrial(423): 129-44. https://dialnet.unirioja.es/servlet/articulo?codigo=8750554
Simonyan, Karen, y Andrew Zisserman. 2014. “Very Deep Convolutional Networks for Large-Scale Image Recognition”. Prepublicación Arxiv. https://doi.org/10.48550/arXiv.1409.1556
Soto Ortigoza, Maricamen, Robert Morillo Montoya y Galí Monpué. 2024. “Desentrañando el lenguaje: impacto de la PNL en la era de la inteligencia artificial”. Revista Saperes Universitas 7 (1): 30-47. https://doi.org/10.53485/rsu.v7i1.415
Wang, Haotian, Yuxuan Xi, Hang Chen, Jun Du, Yan Song, Qing Wang, Hengshun Zhou, Chenxi Wang, Jiefeng Ma, Pengfei Hu, Ya Jing, Shi Cheng, Jie Zhang y Yuzhe Weng. 2023. “Hierarchical Audio-Visual Information Fusion with Multi-Label Joint Decoding for MER 2023”. Prepublicación Arxiv. https://doi.org/10.48550/arXiv.2309.07925
Zikopoulos, Paul, Chris Eaton, Dirk deRoos, Thomas Deutsch y George Lapis. 2012. Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. Nueva York: McGraw-Hill. https://personal.utdallas.edu/~axn112530/cs6350/Understanding_BigData.pdf
Authors:
- They must sent the publication authorization letter to Investigación Bibliotecológica: archivonomía, bibliotecología e información.
- They can share the submission with the scientific community in the following ways:
- As teaching support material
- As the basis for lectures in academic conferences
- Self-archiving in academic repositories.
- Dissemination in academic networks.
- Posting to author’s blogs and personal websites
These allowances shall remain in effect as long as the conditions of use of the contents of the journal are duly observed pursuant to the Creative Commons:Attribution-NonCommercial-NoDerivatives 4.0 license that it holds. DOI links for download the full text of published papers are provided for the last three uses.
Self-archiving policy
For self-archiving, authors must comply with the following
a) Acknowledge the copyright held by the journal Investigación Bibliotecológica: archivonomía, bibliotecología e información.
b) Establish a link to the original version of the paper on the journal page, using, for example, the DOI.
c) Disseminate the final version published in the journal.
Licensing of contents
The journal Investigación Bibliotecológica: archivonomía, bibliotecología e información allows access and use of its contents pursuant to the Creative Commons license: Attribution- Non-commercial-NoDerivatives 4.0.

Investigación Bibliotecológica: archivonomía, bibliotecología e información by Universidad Nacional Autónoma de México is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional License.
Creado a partir de la obra en http://rev-ib.unam.mx/ib.
This means that contents can only be read and shared as long as the authorship of the work is acknowledged and cited. The work shall not be exploited for commercial ends nor shall it been modified.
Limitation of liability
The journal is not liable for academic fraud or plagiarism committed by authors, nor for the intellectual criteria they employ. Similarly, the journal shall not be liable for the services offered through third party hyperlinks contained in papers submitted by authors.
In support of this position, the journal provides the Author’s Duties notice at the following link: Responsibilities of authors.
The director or editor of the journal shall notify authors in the event it migrates the contents of the journal’s official website to a distinct IP or domain.

